
Introduction

In recent years, Deep Learning (DL) has been 
incredibly successful in different areas, from speech 
recognition and automatic image analysis to proto
types of autonomous driving and worldclass level 
algorithms for playing computer games and board 
games, such as “Go”.  The reasons for this success 
are: (1) the availability of massive training data; (2) 
advanced DL techniques that can accurately model 
learning problems by overparameterized large neural 
networks, called Deep Neural Networks (DNN); and 
(3) advances in computing software/hardware that 
made training DNNs affordable. This popularity was 
promoted by novel DNN architectures for image 
classification/segmentation tasks, such as ResNet, 
InceptionNet, DenseNet and UNet. However, wide
spread use in other areas is still hindered due to: (1) 
the lack of sufficient data; and (2) the complex devel
opment process of new problemspecific DNN archi
tectures. Our research focuses on the latter. The 
process of designing DNN architectures is still mostly 
based on experience and trialanderror. Inexperi
enced users are often unable to unlock the power of 
DL as they struggle to navigate the search space of 
possible architectures: number of layers, proper oper
ations (e.g, convolution, pooling and skip connection), 
etc. Our work aims to overcome these issues by 
investigating Neural Architecture Search (NAS)  a key 
area in automated DL. The underlying idea is to view 
the problem of designing a DNN architecture as an 
optimization problem.  A growing body of work now 
shows that automatically generated DNNs can outper
form manually created ones. More generally, NAS is 
also the natural next step after deep learning: while 
deep learning automatically learns representations, 
with NAS we now automatically learn the architectures 
that allow us to learn those representations.  There
fore, NAS has become one of the hottest and most 
intensely researched directions in deep learning, with 
an exponentially growing number of publications on 
the topic. NAS is, however, remarkably costly as it 
might involve training hundreds of thousands of DNN 
architectures, taking from days to weeks or even 

months. Even more concerning is the carbon footprint 
of such simulations due to the enormous power 
consumption. In order to fix this, PI Frank Hutter has 
spearheaded the creation of socalled tabular NAS 
benchmarks, which train a large number of DNNs 
architectures and record their validation performance 
in a table, in order to allow very fast evaluations of 
NAS algorithms after the onetime cost of creating the 
tabular NAS benchmark. This line of work has been 
extremely successful, but current NAS benchmarks 
are still limited in several ways:

    • No logging of side information.
    • No variation of hyperparameters.
    • Limitation to a single or very few datasets.
    • Limitation to simple search spaces.
    • Focus on expensive evaluations, rather 

than cheap multifidelity evaluations used 
by modern NAS optimizers.

In our work we use the SuperMUCNG cluster to 
create the next generation of NAS benchmarks to 
overcome all of these limitations. This next generation 
of benchmarks will facilitate research on NAS, while 
reducing the environmental impact of conducting such 
research and lowering the barrier to entry in this field 
of research. An exciting aspect of our work for the 
HPC field is that, due to our focus on cheap multi
fidelity evaluations (reduced network size, reduced 
image resolutions, etc), in contrast to the predominant 
use of GPUs in other areas of deep learning, our 
experiments are actually much more costefficient to 
perform on a large cluster of CPUs; thus, we carry 
them out on SuperMUCNG. More information about 
our research group is available at our website [1] and 
about our research projects at the project website [2].

Results and Methods

Our ongoing project has already resulted in the cre
ation of the largest known benchmark dataset in the 
field to date, containing 54 million data points each 
consisting of over 20 metrics about the performance 
characteristics of the trained models. Our benchmark 
will facilitate research on automated Deep Learning in 
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Table 1: This table compares the current status of our ongoing project to the 
most recent work in the field, titled NASHPOBenchII (October, 2021), that 
shares a number of common properties with our work but is much more 
limited in its scope.

The Next Generation of Benchmarks for Automated Deep Learning

several ways:
    • Since our search space consists of both 

architectures and hyperparameters, our 
benchmark supports research for NAS, 
Hyperparameter Optimization (HPO) and 
joint NAS and HPO.

    • Our dataset contains 5,400 unique fidelity 
settings spread over 4 different fidelity 
parameters that control the cost of training 
a neural network (most benchmarks are 
limited to 0 or 1 fidelity parameter), a 
unique feature of our benchmark that would 
support researchers who want to employ 
MultiFidelity Optimization techniques in 
NAS and HPO.

    • Our dataset also records 20 metrics and 
heterostructures that could be used by 
researchers to employ MultiObjective 
Optimization techniques for their research.

    • Since our dataset also spans a growing 
number of datasets (3 thus far, more are in 
progress), researchers will also have an 
opportunity to employ Transfer Learning 
techniques with our benchmark.

    • Additionally, we have a collection of nearly 
10 TB of checkpoint data, which can, e.g., 
be used when benchmarking algorithms 
that employ socalled ZeroCost Proxies, 
another recent direction in NAS research.

See Table 1 for a comparison with a reference bench
mark published in October, 2021. We employed a job 
setup that is known to be quite possibly the most 
efficient way to utilize parallel compute resources for 
running any calculation, known as an “Embarrassingly 
Parallel” job setup. This allows us to scaleup the num
ber of computations we perform in parallel, thereby in
creasing cluster usage efficiency, almost infinitely. With 
this job setup we have, thus far, managed to train 
810k unique DL model configurations that consist of 
unique combinations of architecture, hyperparameter 
and fidelity choice on three different datasets. To 
collect this data, we used a total of 27M core hours. 
Figure 1 illustrates the near linear scaling efficiency of 
the parallel processing strategy employed. This infor
mation was used to by the LRZ to determine if the 
workflow could be deployed on a significant portion of 
SuperMUCNG during the “block operation”. In the 
“block operation” the project was provided exclusive 
use of SuperMUCNG for 2 days. During this time 
significant amount of compute resource were used 

and the benchmarks generated are being used by 
another project that produced interesting results, 
which will go into future publications [3,4] and a 
Master’s thesis [5]. Our work offers a staggering 
amount of costsavings in the form of DNN evaluations 
that can be replaced by queries to our benchmark: On 
the one hand, the average amount of computetime 
needed to evaluate the most important class of mod
els in our benchmark is greater than 45 corehours. 
On the other hand, a single query to our benchmark 
produces equivalent data at the cost of less than 0.1 
coreseconds. A single research paper may need to 
evaluate many hundreds of thousands of such mod
els, and using our benchmark will thus both help 
democratize research in this field and save very 
substantial compute time & carbon emissions. As a 
result, other related NAS benchmarks have been cited 
by hundreds of research papers, and we expect the 
same for our new benchmark.

Ongoing Research / Outlook

Currently, we use the remaining compute resources of 
our project to create benchmarks for more datasets, 
as the inclusion of only one or very few target datasets 
is one of the limitations of existing NAS benchmarks. 
For this, we are able to utilize the massive number of 
parallel compute nodes available on the SuperMUC
NG to run simulations for up to 100k Deep Learning 
trainings in parallel. The greatest limitation we face is 
the availability of RAM on a pernode basis, which 
bottlenecks the number of parallel computations that 
we can perform. Nonetheless, the SuperMUCNG pro
vides us with parallel compute resources well beyond 
what we see in related work (see Table 1). Finally, we 
plan to create NAS benchmarks based on complex 
hierarchical search spaces, which are in contrast to 
the simple search spaces of existing benchmarks. As 
the NAS research community is only starting to tackle 
hierarchical NAS, cheap and rigorous ways to 
benchmark in this area are of dire need. Within our 
remaining compute resources we aim to create a 
proofofconcept for such benchmarks and will apply 
for a followup project focusing on these hierarchical 
NAS benchmarks.
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Figure 1: Scaling graph created from scaling studies performed for the block 
operation.


